The secrets of life lie in the molecular flexibility.

Welcome to Prof. Mariusz Jaremko's research group, the

Flexible Systems Lab!

Our research group works mainly on metabolites which are important for human health, and our current main focus in this discipline is oriented towards food, food safety, food quality, and food fraud by utilizing state-of-the-art instrumentation in metabolomics studies. We are also working on aggregation of amylin, a biological peptide that is connected tightly with diabetes II, a disease that is closely related to unhealthy diets. So, food science and the consequences of the food we eat are one of the main areas which the group Flexible Systems investigates. We are also working to develop methods and pulse programs in Nuclear Magnetic Resonance (NMR) that allow us to uncover obscured metabolites and to detect them at lower concentrations, in order to understand metabolic pathways better. 


Why the name Flexible Systems?

It's simple; because metabolites, as well as amylin and its analogues, are very flexible systems i.e. amylin does not have a defined 3D structure, and in the case of the small molecules and metabolites we study, while they do have defined structures, they often exhibit very high levels of dynamic flexibility due to their size.

Latest Publications

“What Doesn’t Kill You Makes You Stronger”: Future Applications of Amyloid Aggregates in Biomedicine

by Sherine Abdelrahman, Mawadda Alghrably, Joanna Izabela Lachowicz, Abdul-Hamid Emwas, Charlotte A. E. Hauser, Mariusz Jaremko
Review Article Year: 2020 DOI: https://doi.org/10.3390/molecules25225245

Abstract

Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer’s disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.