The secrets of life lie in the molecular flexibility.

Welcome to Prof. Mariusz Jaremko's research group, the

Flexible Systems Lab!

Our research group works mainly on metabolites which are important for human health, and our current main focus in this discipline is oriented towards food, food safety, food quality, and food fraud by utilizing state-of-the-art instrumentation in metabolomics studies. We are also working on aggregation of amylin, a biological peptide that is connected tightly with diabetes II, a disease that is closely related to unhealthy diets. So, food science and the consequences of the food we eat are one of the main areas which the group Flexible Systems investigates. We are also working to develop methods and pulse programs in Nuclear Magnetic Resonance (NMR) that allow us to uncover obscured metabolites and to detect them at lower concentrations, in order to understand metabolic pathways better. 


Why the name Flexible Systems?

It's simple; because metabolites, as well as amylin and its analogues, are very flexible systems i.e. amylin does not have a defined 3D structure, and in the case of the small molecules and metabolites we study, while they do have defined structures, they often exhibit very high levels of dynamic flexibility due to their size.

Latest Publications

Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases

by Manel Dhahri, Mawadda Alghrably, Hamdoon A. Mohammed, Syed Lal Badshah, Noreen Noreen, Fouzi Mouffouk, Saleh Rayyan, Kamal A. Qureshi, Danish Mahmood, Joanna Izabela Lachowicz, Mariusz Jaremko, Abdul-Hamid Emwas
Review Article Year: 2022 DOI: http://dx.doi.org/10.3390/pharmaceutics14010001

Abstract

Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.