The secrets of life lie in the molecular flexibility.

Welcome to Prof. Mariusz Jaremko's research group, the

Flexible Systems Lab!

Our research group works mainly on metabolites which are important for human health, and our current main focus in this discipline is oriented towards food, food safety, food quality, and food fraud by utilizing state-of-the-art instrumentation in metabolomics studies. We are also working on aggregation of amylin, a biological peptide that is connected tightly with diabetes II, a disease that is closely related to unhealthy diets. So, food science and the consequences of the food we eat are one of the main areas which the group Flexible Systems investigates. We are also working to develop methods and pulse programs in Nuclear Magnetic Resonance (NMR) that allow us to uncover obscured metabolites and to detect them at lower concentrations, in order to understand metabolic pathways better. 


Why the name Flexible Systems?

It's simple; because metabolites, as well as amylin and its analogues, are very flexible systems i.e. amylin does not have a defined 3D structure, and in the case of the small molecules and metabolites we study, while they do have defined structures, they often exhibit very high levels of dynamic flexibility due to their size.

Latest Publications

Metabolomics-based analysis of the diatom Cheatoceros tenuissimus combining NMR and GC–MS techniques

by Afrah Alothman, Abdul-Hamid Emwas, Upendra Singh, Mariusz Jaremko, Susana Agusti
Original Article Year: 2024 DOI: https://doi.org/10.1016/j.mex.2024.102695

Abstract

Metabolomics, a recent addition to omics sciences, studies small molecules across plants, animals, humans, and marine organisms. Nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC–MS) are widely used in those studies, including microalgae metabolomics. NMR is non-destructive and highly reproducible but has limited sensitivity, which could be supplemented by joining GC–MS analysis. Extracting metabolites from macromolecules requires optimization for trustworthy results. Different extraction methods yield distinct profiles, emphasizing the need for optimization. The results indicated that the optimized extraction procedure successfully identified NMR and GC–MS-based metabolites in MeOH, CHCl3, and H2O extraction solvents. The findings represented the spectral information related to carbohydrates, organic molecules, and amino acids from the water-soluble metabolites fraction and a series of fatty acid chains, lipids, and sterols from the lipid fraction. Our study underscores the benefit of combining NMR and GC–MS techniques to comprehensively understand microalgae metabolomes, including high and low metabolite concentrations and abundances.

Keywords

Metabolomics