The secrets of life lie in the molecular flexibility.

Welcome to Prof. Mariusz Jaremko's research group, the

Flexible Systems Lab!

Our research group works mainly on metabolites which are important for human health, and our current main focus in this discipline is oriented towards food, food safety, food quality, and food fraud by utilizing state-of-the-art instrumentation in metabolomics studies. We are also working on aggregation of amylin, a biological peptide that is connected tightly with diabetes II, a disease that is closely related to unhealthy diets. So, food science and the consequences of the food we eat are one of the main areas which the group Flexible Systems investigates. We are also working to develop methods and pulse programs in Nuclear Magnetic Resonance (NMR) that allow us to uncover obscured metabolites and to detect them at lower concentrations, in order to understand metabolic pathways better. 


Why the name Flexible Systems?

It's simple; because metabolites, as well as amylin and its analogues, are very flexible systems i.e. amylin does not have a defined 3D structure, and in the case of the small molecules and metabolites we study, while they do have defined structures, they often exhibit very high levels of dynamic flexibility due to their size.

Latest Publications

Metabolites from Marine Macroorganisms of the Red Sea Acting as Promoters or Inhibitors of Amylin Aggregation

by Mawadda Alghrably, Mohamed A. Tammam, Aikaterini Koutsaviti, Vassilios Roussis, Xabier Lopez, Giulia Bennici, Abeer Sharafalddin, Hanan Almahasheer, Carlos M. Duarte, Abdul-Hamid Emwas, Efstathia Ioannou, Mariusz Jaremko
Original Article Year: 2024 DOI: https://doi.org/10.3390/biom14080951

Abstract

Amylin is part of the endocrine pancreatic system that contributes to glycemic control, regulating blood glucose levels. However, human amylin has a high tendency to aggregate, forming isolated amylin deposits that are observed in patients with type 2 diabetes mellitus. In search of new inhibitors of amylin aggregation, we undertook the chemical analyses of five marine macroorganisms encountered in high populations in the Red Sea and selected a panel of 10 metabolites belonging to different chemical classes to evaluate their ability to inhibit the formation of amyloid deposits in the human amylin peptide. The thioflavin T assay was used to examine the kinetics of amyloid aggregation, and atomic force microscopy was employed to conduct a thorough morphological examination of the formed fibrils. The potential ability of these compounds to interact with the backbone of peptides and compete with β-sheet formation was analyzed by quantum calculations, and the interactions with the amylin peptide were computationally examined using molecular docking. Despite their structural similarity, it could be observed that the hydrophobic and hydrogen bond interactions of pyrrolidinones 9 and 10 with the protein sheets result in one case in a stable aggregation, while in the other, they cause distortion from aggregation.

Keywords

Amylin Aggregation Natural products