The secrets of life lie in the molecular flexibility.

Welcome to Prof. Mariusz Jaremko's research group, the

Flexible Systems Lab!

Our research group works mainly on metabolites which are important for human health, and our current main focus in this discipline is oriented towards food, food safety, food quality, and food fraud by utilizing state-of-the-art instrumentation in metabolomics studies. We are also working on aggregation of amylin, a biological peptide that is connected tightly with diabetes II, a disease that is closely related to unhealthy diets. So, food science and the consequences of the food we eat are one of the main areas which the group Flexible Systems investigates. We are also working to develop methods and pulse programs in Nuclear Magnetic Resonance (NMR) that allow us to uncover obscured metabolites and to detect them at lower concentrations, in order to understand metabolic pathways better. 


Why the name Flexible Systems?

It's simple; because metabolites, as well as amylin and its analogues, are very flexible systems i.e. amylin does not have a defined 3D structure, and in the case of the small molecules and metabolites we study, while they do have defined structures, they often exhibit very high levels of dynamic flexibility due to their size.

Latest Publications

Exploring the central region of amylin and its analogs aggregation: the influence of metal ions and residue substitutions

by Mawadda Alghrably, Giulia Bennici, Gabriela Szczupaj, Noura Alasmael, Somayah Qutub, Batoul Maatouk, Kousik Chandra, Michal Nowakowski, Abdul-Hamid Emwas, Mariusz Jaremko
Original Article Year: 2024 DOI: https://doi.org/10.3389/fchem.2024.1419019

Abstract

Human amylin (hIAPP) is found in the form of amyloid deposits within the pancreatic cells of nearly all patients diagnosed with type 2 diabetes mellitus (T2DM). However, rat amylin (rIAPP) and pramlintide - hIAPP analogs - are both non-toxic and non-amyloidogenic. Their primary sequences exhibit only slight variations in a few amino acid residues, primarily concentrated in the central region, spanning residues 20 to 29. This inspired us to study this fragment and investigate the impact on the aggregation properties of substituting residues within the central region of amylin and its analogs. Six fragments derived from amylin have undergone comprehensive testing against various metal ions by implementing a range of analytical techniques, including Nuclear Magnetic Resonance (NMR) spectroscopy, Thioflavin T (ThT) assays, Atomic Force Microscopy (AFM), and cytotoxicity assays. These methodologies serve to provide a thorough understanding of how the substitutions and interactions with metal ions impact the aggregation behavior of amylin and its analogs.

Keywords

Aggregation Amylin