The secrets of life lie in the molecular flexibility.

Welcome to Prof. Mariusz Jaremko's research group, the

Flexible Systems Lab!

Our research group works mainly on metabolites which are important for human health, and our current main focus in this discipline is oriented towards food, food safety, food quality, and food fraud by utilizing state-of-the-art instrumentation in metabolomics studies. We are also working on aggregation of amylin, a biological peptide that is connected tightly with diabetes II, a disease that is closely related to unhealthy diets. So, food science and the consequences of the food we eat are one of the main areas which the group Flexible Systems investigates. We are also working to develop methods and pulse programs in Nuclear Magnetic Resonance (NMR) that allow us to uncover obscured metabolites and to detect them at lower concentrations, in order to understand metabolic pathways better. 


Why the name Flexible Systems?

It's simple; because metabolites, as well as amylin and its analogues, are very flexible systems i.e. amylin does not have a defined 3D structure, and in the case of the small molecules and metabolites we study, while they do have defined structures, they often exhibit very high levels of dynamic flexibility due to their size.

Latest Publications

Chapter 1: Theory and Applications of NMR Spectroscopy in Biomolecular Structures and Dynamics of Proteins

by Kousik Chandra, Abdul-Hamid Emwas, Samah Al-Harthi, Zeyad A. Al-Talla, Dina Hajjar, Arwa A. Makki, Ghada Khouqeer, Mariusz Jaremko
Book Chapter Year: 2022 DOI: https://doi.org/10.1039/9781839165702-00001

Abstract

Structural biology has come a long way since the first inception of multidimensional NMR. The dipole–dipole interaction between two spatially closed spins provides a powerful tool to probe macromolecules’ three-dimensional (3D) structure, such as proteins. However, the main challenge for macromolecules is to assign the NMR chemical shifts of all signals of the investigated protein. This chapter presents different 3D triple-resonance NMR experiments dedicated to assignments of NMR signals of protein backbone structure. In addition, the through-space correlation experiments, namely NOESY, ROESY, and HOESY, are presented with detailed information about the advantages and limitations of each. The main strength of NMR lies in obtaining molecular structures under natural conditions and detailed information on the molecular dynamics at different timescales. The detailed characterization of sub-nanosecond segmental motions in proteins was characterized long before the advent of the first solution structure by NMR. Herein, the basic concept behind structure determination and elucidating protein dynamics on different timescales is presented. This chapter also highlights the NMR methodologies regarding characterizing sparsely populated protein conformations and transient states, vital for macromolecular functions.